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Case description

@ Objective:
e Test high-order methods in turbulent flow conditions over a complex
geometry.
o Siiff discrete system poses a challenge for the nonlinear solver.
o Outputs of interest are lift and drag.
@ Flow and boundary conditions:
o M, =02ata=16°.
e Re =9 x 10° based on ¢.; = 0.5588, fully turbulent.
o Adiabatic, no-slip wall at airfoil.
o Characteristics-based free stream at outer boundary.
@ Gas properties:

o vy=1.4and Pr=0.71.
@ Choice of Sutherland’s law or constant viscosity.
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Geometry and provided mesh 2
@ 4070 (coasest) quartic quads generated via agglomeration.
@ Sequence of 3 meshes provided in quad and tri formats.
@ Outer boundary located 50 to 100 chord-lengths away from airfoil.
@ Inner and outer geometries provided.
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Participants codes and meshes »
@ Cranfield:

o Spalart-Allmaras (Edwards) turbulence model.

e WENO, 3" and 5™-order approximations.

@ Roe or HLLC for inviscid flux, centered average for viscous
discretization.
Backward-Euler with 1%*-order Jacobian, LU-SGS linear solver.
Linear triangular meshes with 1000 chord-lengths farfield distance.
Convergence study on sequence of non-nested meshes.
Runs performed on single-node, two 8-core Westmere cores (16
partitions).
@ Michigan:

@ Spalart-Allmaras (ICCFD7 version) turbulence model.

Metric-based anisotropic, isotropic h, and hp-adaptation.
DG, Lagrange basis, full and tensor-product on reference domain.
Roe solver for inviscid flux, BR2 for viscous discretization.
CPTC, relaxed line-search, with in-house GMRES and line-Jacobi
preconditioner.
BAMG mesh (metric-based runs), HOW mesh (quad runs).
o Runs performed on 6 Westmere cores.
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Participants codes and meshes

o DLR:

@ Spalart-Allmaras (ICCFD7 version) turbulence model.
DG, hierarchical polynomial basis on physical space.
Roe solver for inviscid flux, BR2 for viscous discretization.
Nonlinear h-or-p-multigrid with Backward Euler smoother.
SER for CFL evolution.
Structured curved meshes with farfield at 50 chords.
GMRES with h-or-p-multigrid preconditioner and line-Jacobi
smoother.

e 2, 4,8, and 16 partitions.
@ Stuttgart:
Spalart-Allmaras turbulence model.
DG, modal basis.
HLL solver for inviscid flux, BR2 for viscous discretization.
PTC solver with ILU-GMRES linear solver.
High-order mesh via projection of normals.
Runs performed on 8 cores.
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Drag convergence versus DOFs
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Drag convergence versus workunits
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Lift convergence versus DOFs
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Lift convergence versus workunits
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Drag convergence versus Work/DOF
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Lift convergence versus Work/DOF
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Cp distribution
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Cs distribution
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Conclusions

@ Smaller workunits spread this time.

@ Different converged outputs are likely due to different domain
boundaries.

@ Good agreement between participants for C, distribution.
@ Some variation on Cy.

@ Adapitivity saves work, error correction helps but not always
reliable specially for lift.

@ We would like all to reach constant Work/DOF in our algorithms.
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